Measuring Query Latency of Top Level DNS Servers

Jinjin Liang¹, Jian Jiang¹, Haixin Duan¹, Kang Li² and Jianping Wu¹

> Tsinghua University, China¹ University of Georgia²

> > PAM 2013

DNS Overview

- Domain Name System
 - -Translate domain names to IP addresses
 - -Initial step for most Internet applications

Top Level Zones

 Start points of resolutions
 Even with local cache

Replication: State of the art

- Root Zone
 - -Zone Replications
 - 13 Roots (A~M)
 - Uneven QoS

Replication: State of the art

- Root Zone
 - -Zone Replications
 - 13 Roots (A~M)
 - Uneven QoS
 - -Anycast
 - 319 instances
 - All over the world

Replication: State of the art

- Root Zone
 - -Zone Replications
 - 13 Roots (A~M)
 - Uneven QoS
 - -Anycast
 - 319 instances
 - All over the world

What to measure

- What is the actual effect of replications?
 Efficient enough?
 - Uneven QoS improved?

We need a technical survey all around the world

User

Non-Recursive Query

Non-Recursive Query
 Recursive Query

Non-Recursive Query
 Recursive Query

- Advantage
 - No need for direct control of vantage points, thus easy to scale up

Method: Collecting Open Resolvers

Continent	# of countries	# of ASes	# of resolvers	% of total
Europe	45	2821	7169	36.59
North America	25	1837	5525	28.20
Asia	40	940	6056	30.91
South America	11	173	426	2.17
Oceania	7	131	248	1.27
Africa	26	77	149	0.76
Unknown	-	-	20	0.10
Total	154	5979	19593	100.00

- 19593 open resolvers
 - Query log from an authority name server (42%)
 - Authority servers of Alexa top 1M sites (42%)
 - Help from other researchers (16%)
 - Exclude forwarders

- Force a resolver to stop at a specific domain level
 - www.{NXDOMAIN}: latency to root
 - www.{NXDOMAIN}.com : latency to .com TLD
 - Don't forget to cache .com name server first

- Force a resolver to stop at a specific domain level
 - www.{NXDOMAIN}: latency to root
 - www.{NXDOMAIN}.com : latency to .com TLD
 - Don't forget to cache .com name server first

- Force a resolver to stop at a specific domain level
 - www.{NXDOMAIN}: latency to root
 - www.{NXDOMAIN}.com : latency to .com TLD
 - Don't forget to cache .com name server first

- Force a resolver to stop at a specific domain level
 - www.{NXDOMAIN}: latency to root
 - www.{NXDOMAIN}.com : latency to .com TLD
 - Don't forget to cache .com name server first
- Advantage && Limitation
 - Not affected by the cache
 - Observe latency to a domain rather than a specific server

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

User

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

- 1. NS? a-root.king.ccert.edu.cn
- 2. Same as (1)

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

- 1. NS? a-root.king.ccert.edu.cn
- 2. Same as (1)
- 3. Addr: 1.1.1.1
- 4. Same as (3)

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

- 1. NS? a-root.king.ccert.edu.cn
- 2. Same as (1)
- 3. Addr: 1.1.1.1
- 4. Same as (3)
- 5. A? test.a-root.king.ccert.edu.cn

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

- Measure latency from a resolver to a specific server
 - Require a controllable domain
 - Trick resolver to visit a fake name server

- Using NXDOMAIN-Query; root, .com/.net, .org
- 500 queries in two days; get median values

- Using NXDOMAIN-Query; root, .com/.net, .org
- 500 queries in two days; get median values

- Results
 - root (20.26ms)
 - org (39.07ms)
 - com/net (42.64ms)

- Using NXDOMAIN-Query; root, .com/.net, .org
- 500 queries in two days; get median values

- Differences among various continents
 - Europe and North America (Best)
 - South America and Africa
 - 3 to 6 times worse
 - Oceania and Asia
 - Median values
 - Quartile values

- Using King technique
- 300 queries in two days; get median values

- Using King technique
- 300 queries in two days; get median values

- Using King technique
- 300 queries in two days; get median values
- Differences for roots
 - Best: F, J, L
 - (< 200ms for continents)
 - Worst: B
 - (> 300ms except NA)

- Using King technique
- 300 queries in two days; get median values
- Differences for roots
 - Best: F, J, L
 - (< 200ms for continents)
 - Worst: B
 - (> 300ms except NA)
- Differences for continents
 - Best: Europe & North America
 - Poor: Africa, Oceania, South America

- What is proximity of anycast?
 - Evaluate the effect of anycast
 - Difference between anycast address latency and the minimum unicast address latency

- What is proximity of anycast?
 - Evaluate the effect of anycast
 - Difference between anycast address latency and the minimum unicast address latency

Anvcast

- What is proximity of anycast?
 - Evaluate the effect of anycast
 - Difference between anycast address latency and the minimum unicast address latency

Unicast

- What is proximity of anycast?
 - Evaluate the effect of anycast
 - Difference between anycast address latency and the minimum unicast address latency

- What is proximity of anycast?
 - Evaluate the effect of anycast
 - Difference between anycast address latency and the minimum unicast address latency

- Use King Technique; measure F and L root
- Repeat 200 times in 2 days; get the median values

- Froot && Lroot
 - 40% resolvers, T_{proximity} > 50ms
 - Due to routing policy or hierarchical deployment
 - 2%, 1% for F and L,
 - T_{proximity} < -30ms
 - Errors in results, different routing paths, missing some unicast nodes

- Froot && Lroot
 - 40% resolvers, T_{proximity} > 50ms
 - Due to routing policy or hierarchical deployment
 - 2%, 1% for F and L,
 - T_{proximity} < -30ms
 - Errors in results, different routing paths, missing some unicast nodes
- L root Proximity in continents
 - Best: Oceania, Europe
 - Worst: Asia (65%, > 50ms)

Analyzing large latency

- Totally 664 resolvers (3.2% of all) constantly show large latency (> 2s)
- Root: 6s, 18s; com/net: 4s, 6s; org: 6s, 12s

- Analysis methods:
 - fpdns: get fingerprint of resolvers
 - Set up a testing domain with 3 servers to observe resolvers behavior

The cause of large latency

- Cause 1: buggy implementation on IPv4/IPv6 dual-stack
 - Software: BIND 9.2.x
 - Root: 18s; com/net: 4s; org: 12s
 - Patch: BIND (>= 9.3)
- Cause 2: filtering of DNSSEC response
 - Software: most are BIND 9.3.x
 - root, com/net, org : 6 seconds

Conclusion

• Massive deployments of server replications improve the overall DNS performance

- Quality of DNS service is still uneven among different regions
 - More anycast instances?
 - More flexible deployment policy?

Pay more attention to the filtering of large DNSSEC packets

Thanks! Questions?