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Motivation: Network 
Troubleshooting 

 
 
 
 
 

• Home network or access link? 
o WiFi signal or access link? 

 
• ISP, enterprise and content provider networks 

o Within the network or outside? 
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? 
? 

? Latency and network 
performance problems? 

Where? Why?  



Passive Measurement 
in   the Middle 

 
 
 
 

• Decompose path latency of TCP flows 
o Latency: Important interactive web-applications 
o Other approaches: active probing, NetFlow 

 
• Challenges 

o Constrained devices and high data rates 
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Challenge: Constrained Resources 

Passive measurement 
device (gateway, router) 

A B 



TCP Latency 
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• Existing methods: 
Emulate TCP state for 
each flow 
 

• Accurate estimates but 
expensive 
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RTT = TM2 – TM1 

 



TCP Latency 
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• Scaling challenges 

o Large packet and flow 
arrivals 

o Constrained devices 
(limited memory/CPU) 
 

• ALE – Approximate 
Latency Estimator 
 

Source Destination 

Ti
m

e 

Large TCP 
state 

Expensive 
lookup 

 



Design Space 
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Accuracy 

Overhead 

Ideal 
solution 

ALE Goals: 
Configurable 

tradeoff 

Existing solutions 
e.g., tcptrace  

Expensive for 
constrained devices 



ALE Overview 
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• Eliminate packet 
timestamps 
o Group into time intervals 

with granularity (w) 
 

• Store expected ACK 
o SEG: 0-99, ACK: 100 

 
• Use probabilistic set 

membership data 
structure 
o Counting Bloom Filters 

Source Destination 

Ti
m

e 

ΔT = w 

ΔT = w 

 



• Sliding window of buckets (time intervals) 
o Buckets contain a counting bloom filter (CBF) 

 

ALE Overview 
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CBF CBF CBF 
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Controlling Error with 
ALE Parameters 
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Decrease w: Higher Accuracy 

Increase W: 
Higher 

Coverage 

ALE-U (uniform) 

W 
w 

Number of buckets = W/w 



ALE-Exponential (ALE-E) 
• Process large and small latency flows simultaneously 

 
• Absolute error is proportional to the latency 

 
• Larger buckets shift slowly 
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Error Sources 
 

• Bloom filters are probabilistic structures 
o False positives and negatives 

 
Artifacts from TCP 
 
• Retransmitted packets and Reordered packets 

o Excess (to tcptrace) erroneous RTT samples 
 

• ACK numbers not on SEQ boundaries, Cumulative ACKs 
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Evaluation Methodology 
• 2 x  Tier 1 backbone link traces (60s each) from 

CAIDA 
o Flows: 2,423,461,  Packets: 54,089,453 
o Bi-directional Flows: 93,791, Packets: 5,060,357 

 
• Ground truth/baseline comparison:  tcptrace 

o Emulates TCP state machine 
 

• Latencies ALE and tcptrace 
o Packet and flow level 

• Overhead of ALE and tcptrace 
o Memory and compute 
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Latency Distribution 
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60 ms 120 ms 300 ms 500 ms 

Majority of the 
latencies 



Accuracy: RTT Samples 
 
• Range 0-60 ms 

 
• Box plot of RTT 

differences 
 

• More memory => 
Closer to tcptrace 
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Exact match with tcptrace 
Increasing overhead 

(smaller ‘w’) 



Accuracy: RTT Samples 
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Exact match with tcptrace 
Increasing overhead 

ALE-E(12) outperforms ALE-U(24) 
for small latencies 



Accuracy: Flow Statistics 
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• Many applications use 

aggregated flow 
statics 
 
 

• Small w (more buckets) 
o Median flow latencies 

approach tcptrace 

Exact match with tcptrace 

C
D

F 



Accuracy: Flow Statistics 
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Small w: Standard 
deviation of flow 

latencies approach 
tcptrace 

Exact match with tcptrace 



Compute and Memory 
Overhead 

 
• Sample flows uniformly at random at rates 0.1, 0.2, . 

. . 0.7 
o 5 pcap sub-traces  per rate 
o Higher sampling rate (data rate) ⇒ More state for tcptrace 

 
• GNU Linux taskstats API  

o Compute time and memory usage 
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Compute Time 
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ALE scales with 
increasing data rates 



Memory Overhead 
TCPTRACE ALE-U(96) 
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• RSS memory: ≈64 MB 

(0.1) to ≈460 MB (0.7) 
 

• VSS memory: ≈74 MB 
(0.1) to ≈468 MB (0.7) 

 
• RSS memory: 2.0 MB for 

all Sampling rates 
 

• VSS memory: 9.8 MB for 
all sampling rates 

ALE uses a fixed size data structure 



Conclusions 
 

• Current TCP measurements emulate state 
o Expensive: high data rates, constrained devices 

• ALE provides low overhead data structure  
o Sliding window of CBF buckets 

• Improvements over compute and memory with 
tcptrace sacrificing small accuracy 
o Tunable parameters 

• Simple hash functions and counters 
o Hardware Implementation 
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Thank You 
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ALE Compute and 
Memory Bounds 

• Insertion: O(h) time  
o CBF with h hash functions 

• Matching ACK number: O(hn) time 
o ‘n’ buckets 

• Shifting buckets: O(1) time 
o Linked list of buckets 

• ALE-E: O(C) time to merge CBFs 
o ‘C’ counters in the CBF 

• Memory usage: n × C × d bits 
o ‘d‘ bit CBF counters 
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ALE Error Bounds 
 
 

• ALE-U: Average case error w/4 
• ALE-U: Worst case error w/2 

 
• ALE-E: Average case error (3w/16)2i 

• ALE-E: Worst case error (2i−1w) 
o ACK has a match in bucket i 
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ALE Parameters 
 

• ‘w’ on accuracy requirements 
• ‘W’ estimate of the maximum latencies expected 
• CBFs with h = 4 hash functions 
• C on traffic rate, w, false positive rate and h 

 
• E.g., For w = 20 ms, h = 4, and m = R × w, the 

constraint for optimal h (h = (C/m) ln 2) yields C = 
40396 counters 
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Compute Time 
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ALE scales with 
increasing data rates 

10 min trace 



Accuracy: RTT Samples 
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Memory Overhead 
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• Eliminate packet timestamps 
o Time quantization: Use fixed number of intervals 

 
 
 
 
• Store expected acknowledgement number 

ALE Overview 
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S 0, 99 
S 100, 

199 
S 200, 299 

S 300, 399 
S 400, 
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S 500, 599 

S 600, 699 
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S 800, 899 

T1 T2 T3 
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T1 T2 = T1 + w T3 = T1 + 2w 



Motivation: Network 
Troubleshooting 
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Latency Sensitive 
Applications 

Latency and network 
performance problems? 

Where? Why?  
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