
Estimating TCP Latency 
Approximately with 

Passive Measurements 

Sriharsha Gangam, Jaideep 
Chandrashekar, Ítalo Cunha, Jim Kurose 



Motivation: Network 
Troubleshooting 

 
 
 
 
 

• Home network or access link? 
o WiFi signal or access link? 

 
• ISP, enterprise and content provider networks 

o Within the network or outside? 
 

2 

? 
? 

? Latency and network 
performance problems? 

Where? Why?  



Passive Measurement 
in   the Middle 

 
 
 
 

• Decompose path latency of TCP flows 
o Latency: Important interactive web-applications 
o Other approaches: active probing, NetFlow 

 
• Challenges 

o Constrained devices and high data rates 

3 

Challenge: Constrained Resources 

Passive measurement 
device (gateway, router) 

A B 



TCP Latency 

4 

 
 

• Existing methods: 
Emulate TCP state for 
each flow 
 

• Accurate estimates but 
expensive 

Source Destination 

Ti
m

e 

TS1 

TM1 

TM2 

TS2 

TD1 

TD2 

RTT = TM2 – TM1 

 



TCP Latency 

5 

 
• Scaling challenges 

o Large packet and flow 
arrivals 

o Constrained devices 
(limited memory/CPU) 
 

• ALE – Approximate 
Latency Estimator 
 

Source Destination 

Ti
m

e 

Large TCP 
state 

Expensive 
lookup 

 



Design Space 

6 

Accuracy 

Overhead 

Ideal 
solution 

ALE Goals: 
Configurable 

tradeoff 

Existing solutions 
e.g., tcptrace  

Expensive for 
constrained devices 



ALE Overview 

7 

• Eliminate packet 
timestamps 
o Group into time intervals 

with granularity (w) 
 

• Store expected ACK 
o SEG: 0-99, ACK: 100 

 
• Use probabilistic set 

membership data 
structure 
o Counting Bloom Filters 

Source Destination 

Ti
m

e 

ΔT = w 

ΔT = w 

 



• Sliding window of buckets (time intervals) 
o Buckets contain a counting bloom filter (CBF) 

 

ALE Overview 

8 

CBF CBF CBF 

TALE 
W 

w w w 

CBF 

S 0, 99 

hash(FlowId, 99+1) 

i 

CBF CBF 

A 100 
i 

RTT = Δ + w + w/2  
hash(inv(FlowId), 100) 

Current Bucket 

Lookup 

i i i 
Match w w/2 Δ  

Missed 
Latencies 

Max Error: w/2 



Controlling Error with 
ALE Parameters 

9 

Decrease w: Higher Accuracy 

Increase W: 
Higher 

Coverage 

ALE-U (uniform) 

W 
w 

Number of buckets = W/w 



ALE-Exponential (ALE-E) 
• Process large and small latency flows simultaneously 

 
• Absolute error is proportional to the latency 

 
• Larger buckets shift slowly 

10 

A 

w 2w 4w 

B C D E BA DC F DCBA G 

Counting 
Bloom Filter 
(CBF) Merge 



Error Sources 
 

• Bloom filters are probabilistic structures 
o False positives and negatives 

 
Artifacts from TCP 
 
• Retransmitted packets and Reordered packets 

o Excess (to tcptrace) erroneous RTT samples 
 

• ACK numbers not on SEQ boundaries, Cumulative ACKs 
 

11 



Evaluation Methodology 
• 2 x  Tier 1 backbone link traces (60s each) from 

CAIDA 
o Flows: 2,423,461,  Packets: 54,089,453 
o Bi-directional Flows: 93,791, Packets: 5,060,357 

 
• Ground truth/baseline comparison:  tcptrace 

o Emulates TCP state machine 
 

• Latencies ALE and tcptrace 
o Packet and flow level 

• Overhead of ALE and tcptrace 
o Memory and compute 

12 



Latency Distribution 

13 

60 ms 120 ms 300 ms 500 ms 

Majority of the 
latencies 



Accuracy: RTT Samples 
 
• Range 0-60 ms 

 
• Box plot of RTT 

differences 
 

• More memory => 
Closer to tcptrace 

 

14 

 

Exact match with tcptrace 
Increasing overhead 

(smaller ‘w’) 



Accuracy: RTT Samples 

15 

Exact match with tcptrace 
Increasing overhead 

ALE-E(12) outperforms ALE-U(24) 
for small latencies 



Accuracy: Flow Statistics 

16 

 
• Many applications use 

aggregated flow 
statics 
 
 

• Small w (more buckets) 
o Median flow latencies 

approach tcptrace 

Exact match with tcptrace 

C
D

F 



Accuracy: Flow Statistics 

17 

Small w: Standard 
deviation of flow 

latencies approach 
tcptrace 

Exact match with tcptrace 



Compute and Memory 
Overhead 

 
• Sample flows uniformly at random at rates 0.1, 0.2, . 

. . 0.7 
o 5 pcap sub-traces  per rate 
o Higher sampling rate (data rate) ⇒ More state for tcptrace 

 
• GNU Linux taskstats API  

o Compute time and memory usage 

18 



Compute Time 

19 

ALE scales with 
increasing data rates 



Memory Overhead 
TCPTRACE ALE-U(96) 

20 

 
• RSS memory: ≈64 MB 

(0.1) to ≈460 MB (0.7) 
 

• VSS memory: ≈74 MB 
(0.1) to ≈468 MB (0.7) 

 
• RSS memory: 2.0 MB for 

all Sampling rates 
 

• VSS memory: 9.8 MB for 
all sampling rates 

ALE uses a fixed size data structure 



Conclusions 
 

• Current TCP measurements emulate state 
o Expensive: high data rates, constrained devices 

• ALE provides low overhead data structure  
o Sliding window of CBF buckets 

• Improvements over compute and memory with 
tcptrace sacrificing small accuracy 
o Tunable parameters 

• Simple hash functions and counters 
o Hardware Implementation 

21 



Thank You 

22 



ALE Compute and 
Memory Bounds 

• Insertion: O(h) time  
o CBF with h hash functions 

• Matching ACK number: O(hn) time 
o ‘n’ buckets 

• Shifting buckets: O(1) time 
o Linked list of buckets 

• ALE-E: O(C) time to merge CBFs 
o ‘C’ counters in the CBF 

• Memory usage: n × C × d bits 
o ‘d‘ bit CBF counters 

 

23 



ALE Error Bounds 
 
 

• ALE-U: Average case error w/4 
• ALE-U: Worst case error w/2 

 
• ALE-E: Average case error (3w/16)2i 

• ALE-E: Worst case error (2i−1w) 
o ACK has a match in bucket i 

 

24 



ALE Parameters 
 

• ‘w’ on accuracy requirements 
• ‘W’ estimate of the maximum latencies expected 
• CBFs with h = 4 hash functions 
• C on traffic rate, w, false positive rate and h 

 
• E.g., For w = 20 ms, h = 4, and m = R × w, the 

constraint for optimal h (h = (C/m) ln 2) yields C = 
40396 counters 

25 



Compute Time 

26 

ALE scales with 
increasing data rates 

10 min trace 



Accuracy: RTT Samples 

27 



Memory Overhead 

28 



• Eliminate packet timestamps 
o Time quantization: Use fixed number of intervals 

 
 
 
 
• Store expected acknowledgement number 

ALE Overview 

29 

S 0, 99 
S 100, 

199 
S 200, 299 

S 300, 399 
S 400, 

499 
S 500, 599 

S 600, 699 
S 700, 

799 
S 800, 899 

T1 T2 T3 

S 100 
S 200 
S 300 

S 400 
S 500 
S 600 

S 700 
S 800 
S 900 

T1 T2 = T1 + w T3 = T1 + 2w 



Motivation: Network 
Troubleshooting 

30 

Latency Sensitive 
Applications 

Latency and network 
performance problems? 

Where? Why?  


	Estimating TCP Latency Approximately with Passive Measurements
	Motivation: Network Troubleshooting
	Passive Measurement in   the Middle
	TCP Latency
	TCP Latency
	Design Space
	ALE Overview
	ALE Overview
	Controlling Error with ALE Parameters
	ALE-Exponential (ALE-E)
	Error Sources
	Evaluation Methodology
	Latency Distribution
	Accuracy: RTT Samples
	Accuracy: RTT Samples
	Accuracy: Flow Statistics
	Accuracy: Flow Statistics
	Compute and Memory Overhead
	Compute Time
	Memory Overhead
	Conclusions
	Thank You
	ALE Compute and Memory Bounds
	ALE Error Bounds
	ALE Parameters
	Compute Time
	Accuracy: RTT Samples
	Memory Overhead
	ALE Overview
	Motivation: Network Troubleshooting

