

Estimating TCP Latency Approximately with Passive Measurements

Sriharsha Gangam, Jaideep Chandrashekar, Ítalo Cunha, Jim Kurose

Motivation: Network Troubleshooting

Latency and network performance problems? Where? Why?

- Home network or access link?
 o WiFi signal or access link?
- ISP, enterprise and content provider networks

 Within the network or outside?

Passive Measurement in the Middle

Passive measurement device (gateway, router)

A - - - - - B

Challenge: Constrained Resources

Decompose path latency of TCP flows

 Latency: Important interactive web-applications
 Other approaches: active probing, NetFlow

Challenges

o Constrained devices and high data rates

TCP Latency

- Existing methods: Emulate TCP state for each flow
- Accurate estimates but expensive

TCP Latency

- Scaling challenges
 - Large packet and flow arrivals
 - Constrained devices (limited memory/CPU)
- ALE Approximate
 Latency Estimator

ALE Overview

- Eliminate packet timestamps

 Group into time intervals with granularity (w)
- Store expected ACK
 o SEG: 0-99, ACK: 100
- Use probabilistic set membership data structure

 Counting Bloom Filters

ALE Overview

Sliding window of buckets (time intervals)

 Buckets contain a counting bloom filter (CBF)

Controlling Error with ALE Parameters

Decrease *w*: Higher Accuracy

ALE-Exponential (ALE-E)

- Process large and small latency flows simultaneously
- Absolute error is proportional to the latency
- Larger buckets shift slowly

Error Sources

Bloom filters are probabilistic structures

 False positives and negatives

Artifacts from TCP

- Retransmitted packets and Reordered packets

 Excess (to *tcptrace*) erroneous RTT samples
- ACK numbers not on SEQ boundaries, Cumulative ACKs

Evaluation Methodology

- 2 x Tier 1 backbone link traces (60s each) from CAIDA
 - o Flows: 2,423,461, Packets: 54,089,453
 - o Bi-directional Flows: 93,791, Packets: 5,060,357
- Ground truth/baseline comparison: tcptrace
 o Emulates TCP state machine
- Latencies ALE and tcptrace
 o Packet and flow level
- Overhead of ALE and tcptrace
 Memory and compute

Latency Distribution

60 ms 120 ms 300 ms 500 ms

Majority of the latencies

Accuracy: RTT Samples

Accuracy: RTT Samples

•15

Accuracy: Flow Statistics

 Many applications use aggregated flow statics

 Small w (more buckets)

 Median flow latencies approach tcptrace

Accuracy: Flow Statistics

Compute and Memory Overhead

- Sample flows uniformly at random at rates 0.1, 0.2, .
 . 0.7
 - o 5 pcap sub-traces per rate
 - Higher sampling rate (data rate) \Rightarrow More state for *tcptrace*
- GNU Linux taskstats API
 Compute time and memory usage

Compute Time

ALE scales with increasing data rates

Memory Overhead TCPTRACE ALE-U(96)

- RSS memory: ≈64 MB (0.1) to ≈460 MB (0.7)
- VSS memory: ≈74 MB (0.1) to ≈468 MB (0.7)

- RSS memory: 2.0 MB for all Sampling rates
- VSS memory: 9.8 MB for all sampling rates

ALE uses a fixed size data structure

Conclusions

- Current TCP measurements emulate state
 o Expensive: high data rates, constrained devices
- ALE provides low overhead data structure
 Sliding window of CBF buckets
- Improvements over compute and memory with tcptrace sacrificing small accuracy
 Tupoble parameters
 - o Tunable parameters
- Simple hash functions and counters

 Hardware Implementation

Thank You

\bullet \bullet \bullet

ALE Compute and Memory Bounds

- Insertion: O(h) time
 OBF with h hash functions
- Matching ACK number: O(hn) time
 'n' buckets
- Shifting buckets: O(1) time
 o Linked list of buckets
- ALE-E: O(C) time to merge CBFs
 'C' counters in the CBF
- Memory usage: n × C × d bits
 o 'd' bit CBF counters

ALE Error Bounds

- ALE-U: Average case error w/4
- ALE-U: Worst case error w/2
- ALE-E: Average case error (3w/16)2ⁱ
- ALE-E: Worst case error (2ⁱ⁻¹w)
 ACK has a match in bucket i

ALE Parameters

- 'w' on accuracy requirements
- 'W' estimate of the maximum latencies expected
- CBFs with h = 4 hash functions
- C on traffic rate, w, false positive rate and h
- E.g., For w = 20 ms, h = 4, and m = R × w, the constraint for optimal h (h = (C/m) ln 2) yields C = 40396 counters

Compute Time

10 min trace

ALE scales with increasing data rates

Accuracy: RTT Samples

Memory Overhead

ALE Overview

- Eliminate packet timestamps
 - o Time quantization: Use fixed number of intervals

Store expected acknowledgement number

